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SUMMARY

A new boundary element method is presented for steady incompressible ¯ow at moderate and high Reynolds
numbers. The whole domain is discretized into a number of eight-noded cells, for each of which the governing
boundary integral equation is formulated exclusively in terms of velocities and tractions. The kernels used in this
paper are the fundamental solutions of the linearized Navier±Stokes equations with arti®cial compressibility.
Signi®cant attention is given to the numerical evaluation of the integrals over quadratic boundary elements as
well as over quadratic quadrilateral volume cells in order to ensure a high accuracy level at high Reynolds
numbers. As an illustration, square driven cavity ¯ows are considered for Reynolds numbers up to 1000.
Numerical results demonstrate both the high convergence rate, even when using simple (direct) iterations, and
the appropriate level of accuracy of the proposed method. Although the method yields a high level of accuracy in
the primary vortex region, the secondary vortices are not properly resolved. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Searches for novel numerical approaches different from ®nite difference and ®nite element

techniques have led to a rapid progress of boundary element methods for the past decade. However,

boundary element methods can conventionally be referred to as `novel' only, because these numerical

methods have roots stretching back to the pioneering works of Oseen,1 Muskhelishvili,2 Mikhlin3 and

Ladyzhenskaya4 and are closely related to boundary integral equation methods. Having evolved since

the early 1980s, several monographs5±7 and an abundance of papers devoted to boundary element

techniques are indicative of growing interest in these numerical methods.

By now a large number of boundary element formulations have been implemented fully utilizing

the advantages over other numerical approaches, among which the unity decreasing should be

highlighted; that is, only the boundary of the domain is to be discretized. It is well known that

boundary value problems may be represented in terms of boundary integral equations involving the

boundary unknowns and their derivatives solely for problems governed by linear differential
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equations. Unfortunately, viscous ¯uid ¯ow is governed by the non-linear Navier±Stokes equations

and hence a boundary value problem cannot be reduced to a boundary integral equation only and the

advantages of boundary element methods are offset. One is forced to accept the fact that the boundary

element techniques for viscous ¯uid dynamics proposed to date are considerably inferior to the most

sophisticated ®nite element methods in terms of ef®ciency. When numerically modelling viscous

¯uid ¯ow, the non-linear convective term has most often been considered as a pseudo-body force;

this being so, the linear differential equation remaining might be easily converted to boundary

integral form. In that instance, fundamental solutions are utilized which do not take into consideration

the convective nature of the ¯ow. Speci®cally, Onishi et al.,8 Skerget et al.,9 Camp and Gipson,10

Wu11 and Grigor'ev12 used fundamental solutions of the Laplace equation, Tosaka et al.13 and

Dargush and Banerjee14 utilized fundamental solutions of Stokes ¯ow, while Kitagawa et al.15 and

Kitagawa16 used fundamental solutions of the Navier equation. We emphasize that this approach

allows one to calculate velocities at the boundary and internal nodes separately, yet such a nodal

value splitting permits one to use only simple iterations in order to solve the set of non-linear

equations. Built upon this approach, numerical techniques were stable only at low Reynolds numbers.

Attempts to improve the numerical method by utilizing a Newton±Raphson algorithm necessitated a

simultaneous consideration of every boundary and internal nodal value and resulted in a densely

populated square matrix of great size. Evidently, in actual practice, these numerical approaches,

especially for a large number of nodal variables, have failed.

It is reasonably safe to suggest that one way of developing a high-performance boundary element

method is to employ kernel functions taking into account the convective nature of the ¯ow. In

particular, the harnessing of the half-forgotten Oseen fundamental solutions, which were

undeservedly relegated to the background with the advent of digital computers and the rapid

progression of numerical methods, holds much promise. It should be noted that numerical methods,

like ®nite difference and ®nite element methods as well as spectral methods, are incapable of

incorporating any solution of Oseen's kind. Only at the speci®c stage of boundary element technique

advancement do we have considerable opportunity to revert to the classical Oseen solutions.1

It must be emphasized that there were few attempts17,18 to utilize these fundamental solutions with

linearized convective terms. Unfortunately, the behaviour of the convective kernel function was not

properly considered and hence the proposed methods were not accurate even at moderate Reynolds

numbers. Moreover, Kakuda and Tosaka17 reported that the Newton±Raphson algorithm was required

to obtain convergent solutions. It is evident that in order to develop a highly ef®cient boundary

element method utilizing Oseenlets, coef®cients of boundary integral equations should be evaluated

to high accuracy especially at high Reynolds numbers.

In this paper a new boundary element method is presented for numerical modelling of the Navier±

Stokes equations. The kernels used here are the fundamental solutions of the linearized Navier±

Stokes equations with arti®cial compressibility. The utilization of weighting functions incorporating

convective velocities and the linearization of the Navier±Stokes equations within the subdomains

make it possible to implement the ef®cient numerical method for steady viscous ¯uid ¯ow modelling

up to high Reynolds numbers.

2. GOVERNING EQUATIONS AND FUNDAMENTAL SOLUTIONS

Steady state viscous ¯uid ¯ow is governed by the continuity equation

@ui

@xi

� 0; �1�
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which expresses the conservation law of mass, and the Navier±Stokes equation

uj

@ui

@xj

� ÿ @p
@xi

� n
@

@xj

@uj

@xi

� @ui

@xj

 !
; �2�

which expresses the conservation law of momentum. In the dimensionless equations (1) and (2), xi is

the Eulerian co-ordinate, ui is the ¯ow velocity, p is the pressure and n is the viscosity.

Let us consider a penalty function formulation which implies an arti®cial compressibility of the

¯ow,

p � ÿl @ui

@xi

; �3�

where the penalty parameter l is chosen large enough �l > 105� to attain low values of velocity

dilatation. The set of equations will have a unique solution if the boundary conditions are properly

speci®ed as

�ui on G1; �ti on G2; �4�
where G1 and G2 are subregions of G satisfying G1 [ G2 � G and G1 \ G2 � �, while G is the

complete surface bounding the domain O.

The momentum equation (2) may be linearized through the discretization of the whole domain O
into Nc subdomains On, where n � 1; 2; . . . ;Nc, and through the decomposition of the convective

velocity into the sum

ui � V
�n�
i � u0i �5�

for each subdomain. In (5), V
�n�
i is the speci®c constant velocity of the ¯ow in subdomain On and its

value may be taken to be equal to the averaged velocity over the subdomain,

V
�n�
i �

�
On

ui dO
��

On

dO:

Substituting (3) and (5) into (2), we have

V
�n�
j

@ui

@xj

� u0j
@ui

@xj

� @sij

@xj

; �6�

in which the stress tensor may be represented in the form

sij � 2neij � lemmdij:

In the last equation, dij is the Kronecker delta and

eij �
1

2

@ui

@xj

� @uj

@xi

 !
is the rate-of-deformation tensor. Equation (6) will be linear if the velocity perturbation u0j is assumed

to be equal to zero over the subdomain. In this instance we are concerned with the linearization of the

Navier±Stokes equations provided by Oseen:

V
�n�
j

@ui

@xj

� @sij

@xj

: �7�
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Hereafter we shall omit index n for brevity, implying each subdomain On. Oseen, in his classical

monograph,1 derived fundamental solutions of incompressible ¯ow governed by the linearized

Navier±Stokes equation

Vj

@ui

@xj

� ÿ @p
@xi

� n
@2ui

@xj@xj

: �8�

These solutions may be written as*

u*ik�V ; y� � 1

4pn
dik exp ÿ yjVj

2n

� �
K0

rV

2n

� ��
� 1

rV
�yiVk � ykVi ÿ dikyjVj�

2n
rV
ÿ exp ÿ yjVj

2n

� �
K1

rV

2n

� �� ��
; �9a�

qk � ÿ
yk

2pr2
: �9b�

In (9a,b) we de®ne

yi � xi ÿ xi; r2 � yiyi; V 2 � ViVi;

K0�:� and K1�:� are modi®ed Bessel functions of the second kind of zeroth and ®rst order respectively,

xi is the ®eld point and xi is the source point. Functions (9a,b) constitute nothing but the solution of

the set of equations

Vj

@u*ik
@xj

� n
@2u*ik
@xj@xj

� @qk

@xi

� dikd�xÿ x� � 0; �10�

@u*ik
@xi

� 0 �11�

for in®nite unbounded plane ¯ow with constant convective velocity Vi. In (10), d�xÿ x� is the Dirac

delta function. Functions (9) incorporating the convective ¯ow velocity are fully suited for numerical

implementation of the ef®cient boundary element method, but the surprising thing is that the Oseen

solutions (9) have not been implemented in full measure to demonstrate their capabilities!

When using the penalty function formulation, we can derive fundamental solutions of (7) as

u*ik�V ; y� � 1

4pn
dik exp ÿ yjVj

2n

� �
K0

rV

2n

� �
� 1

rV
�Viyk � Vkyi ÿ dikyjVj�

�
� 2n

rV
ÿ exp ÿ yjVj

2n

� �
K1

rV

2n

� �� ��
ÿ 1

4pm
ÿdik exp ÿ yjVj

2m

� �
K0

rV

2m

� ��
� 1

rV
�Viyk � Vkyi ÿ dikyjVj�

2m
rV
ÿ exp ÿ yjVj

2m

� �
K1

rV

2m

� �� ��
; �12�

which satisfy the equation

Vj

@u*ik
@xj

� @s*ijk

@xj

� dikd�xÿ x� � 0: �13�

* The Oseen solutions written in this form were provided by Dr. G. F. Dargush, State University of New York at Buffalo, to the
®rst author and we gratefully acknowledge this contribution.
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In (12) and (13) the notation

s*ijk � 2ne*ijk � le*mmkdij; e*ijk �
1

2

@u*ik
@xj

� @u*jk

@xi

 !
; m � l� 2n

is introduced. Now that we have presented the fundamental solution of the Navier±Stokes equation

with arti®cial compressibility, let us examine its distinguishing features. We draw attention to the fact

that solution (12) transforms to the Oseen fundamental solution (9) at 1=l � 0. Furthermore, if the

convective velocity is virtually zero, solution (12) reduces to the well-known Kelvin fundamental

solution6,16

u*ik �
1

4pn
1ÿ n

m

� �
yiyk

r2
ÿ 1� n

m

� �
dik ln r

� �
�14�

of the Navier equation

n
@2ui

@xj@xj

� �l� n� @
2uj

@xixj

� 0:

When the convective velocity is equal to zero and the compressibility parameter tends to in®nity,

expression (12) converts to the Stokeslet

u*ik �
1

4pn
yiyk

r2
ÿ dik ln r

� �
�15�

satisfying the Stokes equation

n
@2ui

@xj@xj

� ÿ @p
@xi

;
@ui

@xi

� 0:

Moreover, function (12) tends to zero as one travels from the source node, i.e. as the radius r

approaches in®nity. Conversely, u*ik tends to in®nity as r! 0. The tensor u*ik is symmetric, i.e.

u*12 � u*21. What is more, it is easy to verify that u*11 � ÿu*22. As may be seen, the fundamental

solutions change dramatically, especially at high Reynolds numbers. Because of this, particular

emphasis should be placed on the numerical evaluation of integrals over boundary elements involving

the source node.

3. BOUNDARY INTEGRAL EQUATION

Let us consider the tensors

T*jk � uis*ijk; Tjk � siju*ik :

Then, using the identities19

�
O

@Tjk

@xj

ÿ @T*jk

@xj

 !
dO �

�
G
�Tjk ÿ T*jk�nj dG; sij

@u*ik
@xj

� @ui

@xj

s*ijk;
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we transform equation (6) to the boundary integral equation

cik�x�ui�x� �
�
G

ui�x�t*ik�V ; y� dG�x� �
�
G

ui�x�uj�x�nj�x�u*ik�V ; y� dG�x�

�
�
G

ti�x�u*ik�V ; y� dG�x� �
�
O

ui�x�u0j�x�
@u*ik�V ; y�

@xj

dO�x�: �16�

In the boundary integral equation (16), ti�x� � sij�x�nj�x� is the traction, ni�x� is the local unit outward

normal to the surface G and t*ik�V ; y� � s*ijk�V ; y�nj is the stress tensor associated with the Green

function (12). The coef®cient cik�x� depends upon the location of the source point. When the point x
is inside O; cik�x� � dik . If the source node is outside the domain O; cik�x� � 0. For x located right on

the smooth boundary G, the coef®cient cij�x� is equal to 1
2
dik . In the general case the collocation node

x may be situated at the corners where the unit normal ni is subject to a discontinuity and, in

consequence, the value of cik�x� is determined by the relative smoothness of the boundary G at x.

However, as indicated later, the values of cik�x� need not be evaluated in an explicit form, since this

coef®cient will be found in an indirect manner coincidentally with the evaluation of coef®cients of

the discretized boundary integral equation.

We draw attention to the fact that the boundary integral equation (16) contains no velocity

derivatives, thus eliminating the need for their evaluation.

4. NUMERICAL IMPLEMENTATION

4.1. Spatial discretization

Consider an eight-noded cell for the geometric representation of the subdomain On, for which

biquadratic shape functions are introduced to approximate the geometric and functional variation

within the volume cell:

j � P8
a�1

j�a�Ma�Z1; Z2�: �17�

In (17), j�a� represent the nodal values of xi; ui and ti, the shape functions are de®ned as usual (see

Reference 5 for details), while Z1 and Z2 are the intrinsic co-ordinates of the volume cell. Once the

cell is introduced, four boundary elements are automatically de®ned, in which quadratic shape

functions are speci®ed:5

j � P3
a�1

j�a�Na�Z�: �18�

Discretizing the integral equation (16) using quadratic boundary elements and biquadratic volume

cells, we obtain

cmukm �
P4
n�1

P3
a�1

P2
i�1

u
�a�
in G

�a�
ikmn �

P4
n�1

P3
a�1

P2
i�1

u
�a�
in F

�a�
ikmn �

P4
n�1

P3
a�1

P2
i�1

t
�a�
in H

�a�
ikmn �

P8
a�1

P2
i�1

u
�a�
i V̂

�a�
ikm;

�19�

912 M. M. GRIGORIEV AND A. V. FAFURIN

INT. J. NUMER. METH. FLUIDS, VOL. 25: 907±929 (1997) # 1997 John Wiley & Sons, Ltd.



where

G
�a�
ikmn �

�
Gn

Na�Z�t*ik�V ; y�m�� dG�x�; �20a�

H
�a�
ikmn �

�
Gn

Na�Z�u*ik�V ; y�m�� dG�x�; �20b�

~F
�a;b�
ikmn �

�
Gn

Na�Z�Nb�Z�u*ik�V ; y�m�� dG�x�; �20c�

F
�a�
ikmn �

P3
b�1

P2
j�1

u�b�j nj
~F
�a;b�
ikmn ;

~V
�a;b�
ijkm �

�
O

Ma�Z1; Z2�Mb�Z1; Z2�
@u*ik�V ; y�m��

@xj

dO�x�; �20d�

V̂
�a�
ikm �

P8
b�1

P2
j�1

u
0�b�
j

~V
�a;b�
ijkm :

As mentioned above, the fundamental solution (12) exhibits a complex nature upon approaching

in®nity from the source node. It is apparent that the validity of the presented boundary element

method depends mainly on the accuracy of obtaining integrals (20). When integrating over a

boundary element Gn, we distinguish three categories of singularity:

(i) non-singular case, when the collocation node is located far from the boundary element, i.e.

h5 hq

(ii) quasi-singular case, when the source node is situated in close proximity to Gn, i.e. h < hq

(iii) singular case, when the collocation point lies on the boundary element Gn.

For non-singular integration of category (i), integrals (20a±c) may be evaluated using standard

Gaussian quadrature formulae if the global co-ordinates are transformed to the intrinsic co-ordinates.

Turning next to category (ii), when the distance h between the source point x and the boundary

element Gn is less than the speci®ed quasi-singular distance hq, we should utilize higher-order

Gaussian quadrature to accurately capture the kernel behaviour. In order to increase the numerical

integration ef®ciency, a non-linear transformation similar to that proposed by Telles20 is used.

Particular emphasis should be placed on the accurate determination of category (iii) integrals when

integrands u*ik and t*ik exhibit singularity at x! x�m�. As will readily be observed, the free space

Green function u*ik introduces an ln r-type singularity and integral (20b) is integrable at every

Na; a � 1; 2; 3, while the traction tensor t*ik has a 1=r-type singularity and thus (20a) is integrable

only for speci®c combinations of a and the source node location on the boundary element. In the case

where a coincides with the local number of the node, integral (20a) exists only in the Cauchy

principal value sense and cannot be evaluated directly.

To analytically integrate (20b), consider the boundary element referring to the straight segment

showing in Figure 1. The fundamental solution (12) may be written as

u*ik�V ; y� � dik
~h*�n� � h*ik�n� ÿ h*ik�m�; �21�

where

~h*�n� � 1

2pn
exp ÿ yjVj

2n

� �
K0

rV

2n

� �
�22�
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is the fundamental solution of the convection±diffusion equation and

h*ik�n� �
1

4pn
ÿdik exp ÿ yjVj

2n

� �
K0

rV

2n

� ��
� 1

rV
�Viyk � Vkyi ÿ dikyjVj�

2n
rV
ÿ exp ÿ yjVj

2n

� �
K1

rV

2n

� �� ��
: �23�

In the case of curvilinear (quadratic) boundary elements the total integration procedure may be

separated into two parts:

(i) analytical integration over the straight segment tangential to the curvilinear boundary element

at the source node

(ii) numerical integration over the remaining part of the boundary element.

Part (i) is identical with the procedure outlined below if it is remembered that the integration is

performed not over the whole boundary element but over its part, as provided by Shi and Banerjee.21

Using (21)±(23), we write integral (20b) in the form

H
�a�
ikmn � dik

~h�a�mn�n� � h
�a�
ikmn�n� ÿ h

�a�
ikmn�m�; �24�

where

~h�a�mn�n� � Ln

�1

0

Na�Z�~h*�n� dZ; �25a�

h
�a�
ikmn�n� � Ln

�1

0

Na�Z�h*ik�n� dZ; �25b�

h
�a�
ikmn�m� � Ln

�1

0

Na�Z�h*ik�m� dZ: �23c�

Considering the boundary element illustrated schematically in Figure 1, we can express the

interpolating polynomials (18) as

Na e� y

yL

� �
� P3

b�1

aab �
y

yL

� �bÿ1

; a � 1; 2; 3;

Figure 1. Boundary element integration scheme
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in which e � 0 for local node 1, e � 1
2

for node 2 and e � 1 for node 3. The coef®cients aab are given

by

a �
1ÿ 3e� 2e2 4eÿ 3 2

4eÿ 4e2 4ÿ 8e ÿ4

2e2 ÿ e 4eÿ 1 2

24 35:
Next we obtain integrals (25a) as

~h�a�mn�n� �
1

pV

P3
b�1

aaby
1ÿb
L ��ÿ1�bÿ1Pbÿ1�eyL; g*� � Pbÿ1�yL ÿ yLe; g��; �26�

where

yL �
LnV

2n
; g � eini; g* � ÿg;

ei is the vector tangent to the boundary element,

e1 � ÿn2; e2 � n1;

vi � Vi=V is the unit convective velocity vector and Ln is the boundary element length. The

evaluation of the integral

Pk�yL; g� �
�yL

0

yk exp�ÿgy�K0�y� dy; k � 0; 1; 2; 3; 4; �27�

is detailed in Appendix I. Integral (25b) can be stated as

h
�a�
ikmn�n� � ÿ 1

2
dik

~h�a�mn�n� � 1
2
�viQ

�a�
k �n� � vkQ

�a�
i �n� ÿ dikvjQ

�a�
j �n��; �28�

in which the integral Q
�a�
i �n� is given by

Q
�a�
i �n� �

ei

pV

P3
b�1

aaby
1ÿb
L ��ÿ1�bTbÿ1�eyL; g*� � Tbÿ1�yL ÿ yLe; g��: �29�

The analytical integration of

Tk�yL; g� �
�yL

0

yk 1

y
ÿ exp�ÿgy�K1�y�

� �
dy; k � 0; 1; 2; 3; 4; �30�

is provided in Appendix II. Next we express (20a) as

G
�a�
ikmn � ~g

�a�
ikmn�n� � g

�a�
ikmn�n� ÿ g

�a�
ikmn�m�; �31�

where

~g
�a�
ikmn�n� � Ln

�1

0

Na�Z� ~g*ik�n� dZ; �32a�

g
�a�
ikmn�n� � Ln

�1

0

Na�Z�g*ik�n� dZ; �32b�

g
�a�
ikmn�m� � Ln

�1

0

Na�Z�g*ik�m� dZ: �32c�
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In (32a±c) the following notation is used:

~g*ik�n� � ÿ 1
2
dikVjnj

~h*�n� ÿ 1
2

Vink
~h*�n� ÿ dik

V

2pn
yjnj

2r
exp ÿ yjVj

2n

� �
K1

rV

2n

� �
ÿ V

2pn
yink

2r
exp ÿ yjVj

2n

� �
K1

rV

2n

� �
ÿ l

2n
Vkni

~h*�n� ÿ lV

2pn2

ykni

2r
exp ÿ yjVj

2n

� �
K1

rV

2n

� �
; �33�

g*ik� ~m� �
n

4p ~m

�
�dikvjnj ÿ nkvi�

V

2 ~m
exp ÿ yjVj

2 ~m

� �
K0

rV

2 ~m

� �
� �dikyjnj � nkyi�

V

2 ~mr
exp ÿ yjVj

2 ~m

� �
K1

rV

2 ~m

� �
ÿ 2

r3
�yjnj�ykvi � yivk ÿ dikyjvj� � yi�ykvjnj � vkyjnj ÿ nkyjvj��

2 ~m
rV
ÿ exp ÿ yjVj

2 ~m

� �
K1

rV

2 ~m

� �� �
� 2nivk

r

2 ~m
rV
ÿ exp ÿ yjVj

2 ~m

� �
K1

rV

2 ~m

� �� �
� V

2 ~mr2
�yjnj�ykvi � yivk ÿ dikyjvj� � yi�ykvjnj � vkyjnj ÿ nkyjvj�� exp ÿ yjVj

2 ~m

� �
K0

rV

2 ~m

� �
� V

2 ~mr
�vjnj�ykvi � yivk ÿ dikyjvj� � vi�ykvjnj � vkyjnj ÿ nkyjvj�� exp ÿ yjVj

2 ~m

� �
K1

rV

2 ~m

� ��
� lVni

4p ~m2
vk exp ÿ yjVj

2 ~m

� �
K0

rV

2 ~m

� �
� yk

r
exp ÿ yjVj

2 ~m

� �
K1

rV

2 ~m

� �� �
; �34�

where ~m is equal to n and m for (32b,c) respectively. Substituting (33) into (32a) and using the identity

yjnj � 0, we obtain

~g
�a�
ikmn�n� � ÿ

V

2
dikvjnj � vink �

l
v
vkni

� �
~h�a�mn�n� � nkR

�a�
i �n� �

l
n

niR
�a�
k �n�

� �� �
; �35�

where

R
�a�
i �n� � ÿQ

�a�
i �n� � ~R

�a�
i ; �36�

~R
�a�
i �

Ln

pV

�1

0

yi

r
Na�Z� dZ: �37�

Evidently, if the local nodal point number coincides with a, integrals (32) cannot be evaluated

owing to a 1=Z-type singularity in the integrands. Otherwise, the integrals contain solely a weak

singularity. Thus we can present integral (37) in the form

a � 1 : ~R
�1�
i �

2ei

pV
�eÿ 1� for e 6� 0; �38a�

a � 2 : ~R�2�i �
2ei

pV
�1ÿ 2e� for e 6� 1

2
; �38b�

a � 3 : ~R
�3�
i �

2ei

pV
e for e 6� 1: �38c�
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Let us next express integrals (32b,c) as

g
�a�
ikmn� ~m� �

V

2 ~m
lnivk �

n
2
�dikvjnj � nkvi�

� �
~h�a�mn� ~m� �

V

2 ~m
lni �

n
2
vjnjvi

� �
R
�a�
k � ~m�

� n
4 ~m
�V �nk � vjnjvk�R�a�i � ~m� ÿ 4 ~mvjnjY

�a�
ik � ~m� � 4 ~mnkvjY

�a�
ij � ~m� � 4 ~mnivkS�a�� ~m�

� VvjnjZ
�a�
ik � ~m� ÿ VnkvjZ

�a�
ij � ~m� ÿ dikVnjvjvlR

�a�
l � ~m� � VvjnjviR

�a�
k � ~m� ÿ VvinkvjR

�a�
k j � ~m��; �39�

where

S�a�� ~m� � Ln

2p ~m

�1

0

1

r
Na�Z�

2 ~m
rV
ÿ exp ÿ yjVj

2 ~m

� �
K1

rV

2 ~m

� �� �
dZ; �40a�

Y
�a�
ik � ~m� �

Ln

2p ~m

�1

0

yiyk

r3
Na�Z�

2 ~m
rV
ÿ exp ÿ yjVj

2 ~m

� �
K1

rV

2 ~m

� �� �
dZ; �40b�

Z
�a�
ik � ~m� �

Ln

2p ~m

�1

0

yiyk

r3
Na�Z� exp ÿ yjVj

2 ~m

� �
K0

rV

2 ~m

� �
dZ �40c�

are given by

S�a�� ~m� � 1

2p ~m
P3
b�2

aaby
1ÿb
L ��ÿ1�bÿ1Tbÿ2�eyL; g*� � Tbÿ2�yL ÿ eyL; g��;

Y
�a�
ik � ~m� � eiekS�a�� ~m�; Z

�a�
ik � ~m� � eiek

~h�a�� ~m�:
Integrals (32) involve a strong 1=Z-type singularity and exist only in the Cauchy principal value sense

if the aa1-values are equal to unity. In the present work these integrals are evaluated indirectly using

the discrete boundary integral equation (19) and uniform velocity ®elds (a) u1 � 1; u2 � 0 and (b)

u1 � 0; u2 � 1 satisfying both the continuity and momentum equations. Here we derive the simpli®ed

representation of the integral equation (19) as

cik�x�m�� �
P4
n�1

P3
a�1

G
�a�
ikmn �

P4
n�1

P3
a�1

P2
j�1

VjnjH
�a�
ikmn � 0; �41�

which may be written 8d2 times for every volume cell, where `8' implies the number of collocation

points in the cell and d � 2 is the dimensionality of the problem. It is obvious that there are also 8d2

strongly singular coef®cients G
�a�
ikmn and, in consequence, their values can be calculated from the

discrete integral equation (41) if cik and G
�a�
ikmn are previously combined. Ultimately, the values of

cik�x�m�� need not be obtained in an explicit form.

Next we represent integral (20c) containing the product of functions Na�Z� and Nb�Z� as

~F
�a;b�
ikmn � dik

~f �a;b�mn �n� � f
�a;b�

ikmn �n� ÿ f
�a;b�

ikmn �m�; �42�
where

~f �a;b�mn �n� � Ln

�1

0

Na�Z�Nb�Z�~h*�n� dZ; �43a�

f
�a;b�

ikmn �n� � Ln

�1

0

Na�Z�Nb�Z�h*ik�n� dZ; �43b�

f
�a;b�

ikmn �m� � Ln

�1

0

Na�Z�Nb�Z�h*ik�m� dZ: �43c�
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Substituting the interpolating polynomials Na�Z� and expression (22) into (43a), we obtain

~f �a;b�mn �n� �
1

pV
faa1ab1�P0�eyL; g*� � P0�yL ÿ eyL; g��

� �aa1ab2 � aa2ab1��ÿP1�eyL; g*� � P1�yL ÿ eyL; g��=yL

� �aa1ab3 � aa2ab2 � aa3ab1��P2�eyL; g*� � P2�yL ÿ eyL; g��=y2
L

� �aa2ab3 � aa3ab2��ÿP3�eyL; g*� � P3�yL ÿ eyL; g��=y3
L

� aa3ab3�P4�eyL; g*� � P4�yL ÿ eyL; g��=y4
Lg:

Integral (43b) may be written as

f
�a;b�

ikmn �n� � ÿ
dik

2
~f �a;b�mn �n� �

1

2V
�Vi ~q

�a;b�
k �n� � Vk ~q

�a;b�
i �n� ÿ dikVj ~q

�a;b�
j �n��; �44�

where ~q
�a;b�
i �n� is given by

~q
�a;b�
i �n� � ei

pV
faa1ab1�ÿT0�eyL; g*� � T0�yL ÿ eyL; g��

� �aa1ab2 � aa2ab1��T1�eyL; g*� � T1�yL ÿ eyL; g��=yL

� �aa1ab3 � aa2ab2 � aa3ab1��ÿT2�eyL; g*� � T2�yL ÿ eyL; g��=y2
L

� �aa2ab3 � aa3ab2��T3�eyL; g*� � T3�yL ÿ eyL; g��=y3
L

� aa3ab3�ÿT4�eyL; g*� � T4�yL ÿ eyL; g��=y4
Lg:

Numerical evaluation of the volume integral (20d) involves some dif®culties due to the 1=Z-type

kernel singularity. To reduce the singularity order of the integrand, we apply the divergence theorem

to (20d):

~V
�a;b�
ijkm �

�
G

Ma�Z1; Z2�Mb�Z1; Z2�u*ik�V ; y�nj�x� dG�x� ÿ
�
O

u*ik�V ; y� @Ma�Z1; Z2�Mb�Z1; Z2�
@xj

dO�x�:

�45�
In that case the integrand singularity reduces to the order of ln r and thus the volume integral on the

right-hand side of (45) can be evaluated accurately using a lower order of Gaussian quadrature than

that of the case where the Gaussian quadrature is directly applied to (20d).

As a result of the singular nature of the kernel u*ik , every volume cell needs to be subdivided into

either four or six non-overlapping triangles so that the collocation node x�m� is one of the apexes. To

ensure the higher-order accuracy of volume integration at high Reynolds numbers, each triangle is

additionally subdivided into several non-uniform subsegments (see Figure 2).

In order to evaluate the surface integral over G on the right-hand side of (45), we express it as the

sum�
G

Ma�Z1; Z2�Mb�Z1; Z2�u*ik�V ; y�nj�x� dG�x� � P4
n�1

n
�n�
j

�
Gn

Ma�Z1; Z2�Mb�Z1; Z2�u*ik�V ; y� dG�x�:

�46�
The interpolating function Ma�Z1; Z2� on the contour G either reduces to the interpolating functions

over boundary elements or is virtually nil. Accordingly, integrals over Gn on the right-hand side of

(46) convert to the integrals ~F
�a;b�
ikmn .

It is well known that the accuracy of boundary element methods essentially depends on the

accuracy of evaluation of discrete integral equation coef®cients and therefore it is crucial to be aware
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of the validity of their calculation. In this paper, to verify the accuracy of this step, we suggest

applying the velocity ®eld

u1 � 4x2�1ÿ x2�; u2 � 0; �47�
which is the exact solution of the Navier±Stokes equation for fully developed viscous ¯ow between

two plates. It is evident that pro®le (47) is appropriate for veri®cation solely in the case of

incompressible ¯ow, i.e. 1=l � 0. The discrepancy between the left-hand and right-hand sides of (19)

indicates the accuracy order in obtaining the discrete integral equation coef®cients.

4.2. Numerical solution

We adopt collocation nodes at every cell node and write the discrete integral equation for each of

them. Obviously, this procedure can be carried out for every cell On. It is well to bear in mind that

four linearly independent discrete integral equations (two for each of neighbouring cells) may be

formulated for each internal even-numbered node as well as that the number of unknowns at this node

is equal to eight. Using compatibility conditions between neighbouring cells I and II, i.e.

u
�I�
i � u

�II�
i ; t

�I�
i � ÿt

�II�
i ;

we reduce the number of unknowns to the number of discrete integral equations, namely four. The

situation is more complicated if an odd-numbered node is considered, which, of course, is assumed to

be a vertex of the cell. If the surface force ti is considered for each of r boundary elements radiating

from the star-type node, we have to utilize 2�r � 1� unknowns for that node. This leads to a dramatic

increase in the number of global unknowns and hence the stresses sij are used as the nodal variables

in this paper. Since the tensor sij is symmetric, we may take into consideration only three components

of the tensor. Owing to this, there are only ®ve nodal variables at the internal cell vertex, namely two

velocity variables and three unknowns of the stress, whereby the tractions ti may readily be evaluated

as

ti � si1n1 � si2n2:

This approach has also been utilized for the star-type boundary nodes lying on the smooth boundary.

As for boundary corner nodes, we have not considered them as star-type nodes but simply imposed

there velocities or tractions, although we should have handled these corner nodes as double nodes to

Figure 2. Volume cell subdivided into several subdomains

BEM FOR STEADY VISCOUS FLUID FLOW 919

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 907±929 (1997)



increase the accuracy of the numerical method. As will be seen in the next section, this results in poor

resolution at the corners when modelling driven cavity ¯ow.

To solve the boundary value problem, proper natural boundary conditions associated with this

formulation must be speci®ed: �ui on Gi and, if G 6� G1 (and only if), we specify �ti, on G2. For the

driven cavity problem considered in this paper, G � G1 and G2 � � so only the velocities must be

speci®ed on the complete boundary G. For other ¯ows such as channel ¯ows or external ¯ows the

boundary conditions will not be discussed here, although we believe that there will not be radical

dif®culties in such types of ¯ows.

Once the required number of linearly independent integral equations (19) has been written and the

boundary conditions speci®ed have been exploited, we derive a global set of non-linear algebraic

equations

A�x�x � b; �48�
where x is the vector of unknowns containing a mixture of generalized velocities and stresses. Since

the elements of the global matrix A depend on the averaged convective velocity Vi which is to be

re®ned during the iteration process, system (48) should be linearized on the assumption that the

velocity Vi does not depend on x during an iteration step. Examining the domain discretized into a

plethora of cells, we derive the banded global matrix A in a similar way as for ®nite element methods.

However, the matrix is unsymmetric. In order to solve the set of equations (48), a direct iteration

procedure is used here and, in doing so, the set of linear equations

A�x�qÿ1��x�q� � b �49�
is solved at every iteration. In (49), q is the iteration number. To solve system (49), the direct method

for solving sparse equations presented by ésterby and Zlatev22 has been utilized in this work.

5. NUMERICAL RESULTS

The numerical algorithm proposed above has been implemented in C�� code on a personal

computer, which allows us to simulate steady two-dimensional viscous ¯uid ¯ows. The numerical

method has been applied to square driven cavity ¯ow, for which a large number of numerical results

are available for comparison purposes. Amongst these, the most attractive is the work of Ghia et al.,23

where the numerical computations were carried out using multigrid ®nite differences on very ®ne

1296129 and 2576257 grids up to Re� 10,000.

In this paper, numerical solutions for square driven cavity ¯ow have been carried out up to

Re� 1000 at l � 1010. The velocities on the left, bottom and right walls are ®xed at zero, while unit

velocity is speci®ed on the moving top lid. The numerical examples show a very high rate of

convergence. For instance, starting from the velocities equal to zero, the iteration process converges

in only six steps at Re� 100, while nine steps are required at Re� 400 and 11 steps at Re� 1000. It is

assumed that the iterations are converged when the r.m.s. ¯ow velocity between successive iterations

is less than 1075 for each velocity component. The convergence rate therewith is uniform for every

nodal point as evidenced by the maximum residual between successive iterations. It is notable that the

iteration convergence rate has only a weak dependence on the mesh size, which can have a

determining effect on the ef®ciency of the proposed method when using it for engineering problems

with thousands of cells.

It is common knowledge that a similar high convergence rate may be achieved only if the Newton±

Raphson algorithm is employed for a non-linear set of equations. Unfortunately, with the Newton±

Raphson method a convergent solution may not be obtained unless the initial guess is near the true

920 M. M. GRIGORIEV AND A. V. FAFURIN

INT. J. NUMER. METH. FLUIDS, VOL. 25: 907±929 (1997) # 1997 John Wiley & Sons, Ltd.



solution. To have a good initial guess, a succession of calculations should be used at different

(increasing) Reynolds numbers. It is axiomatic that this increases the computational expense.

Results are presented for a non-uniform mesh with Nc � 324 cells as shown in Figure 3. Figure 4

illustrates the spatial plots of the resulting velocity vectors for different Reynolds numbers. The

vector plots are very similar to those obtained previously by other authors and widely covered in the

literature. The numerical results are examined more comprehensively in Figure 5, where the

horizontal velocities on the vertical centreline (Figure 5(a)) and the vertical velocities on the

horizontal centreline (Figure 5(b)) are presented. As may be inferred from the graphs, the numerical

solutions are in good agreement with those obtained by Ghia et al.23

Several properties of the primary vortices are given in Table I. The results of the present study are

in good agreement with those of Ghia et al.23 Unfortunately, secondary vortices were not resolved in

this study owing to the poor resolution in the corner regions. To increase the accuracy of the method,

we should use a ®ner mesh than that used here as well as handle corners as double nodes.

In this paper no numerical results are presented beyond a Reynolds number of 1000, since a more

re®ned mesh than that used here must be employed to obtain valid results. Such calculations may be

carried out either on a more powerful computer or on this personal computer if the number of global

unknowns is dramatically decreased via an elimination of stresses at internal nodes from global

unknowns.

Figure 3. Boundary element model

Table I. Properties of primary vortices inside square driven cavity

Property Case Re� 100 Re� 400 Re� 1000

Cmin Present study ÿ0.10208 ÿ0.11164 ÿ0.11411
Ghia et al.23 ÿ0.103423 ÿ0.113909 ÿ0.117929

Location x, y Present study 0.610, 0.730 0.555, 0.610 0.545, 0.575
Ghia et al.23 0.6172, 0.7344 0.5547, 0.6055 0.5313, 0.5625
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6. CONCLUSIONS

In this paper a new boundary element method has been presented for steady two-dimensional viscous

¯uid ¯ow. The numerical method is stable and exhibits a high convergence rate even when using

simple iterations. It is quite apparent that these features are due to the special nature of fundamental

solutions incorporating the physics of convective ¯ow. Although the BEM technique does not permit

Figure 4. Velocity vectors for square driven cavity ¯ow: (a) Re� 100; (b) Re� 400; (c) Re� 1000
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one to reduce the problem to only a boundary problem, the ef®ciency of the method compares

favourably with the ef®ciency of the most sophisticated ®nite element methods. This method

ef®ciency may essentially be improved while reducing the number of nodal unknowns to two at each

internal node. It should be emphasized that the proposed boundary element method enables one to

model ¯ows within very complex boundaries in a straightforward manner. From the aforesaid it

might be assumed that this is a general-purpose computational method for ¯uid dynamics.
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APPENDIX I: DERIVATION OF INTEGRALS Pk

The integral Pk�yL; b� is given by

Pk�yL; b� �
�yL

0

yk exp�ÿby�K0�y� dy; k � 0; 1; 2; 3; 4: �50�

To integrate (50), we present the modi®ed Bessel function of zeroth order as24

K0�y� � ÿln
y

2

� � P1
n�0

any2n � P1
n�0

bny2n; 0 < y4 2; �51�

K0�y� �
exp�ÿy�p

y

P6
n�0

cn

2

y

� �n

� e1; y > 2; �52�

Figure 4. (continued )
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Figure 5. Velocity pro®les: (a) u1 on vertical centreline; (b) u2 on horizontal centreline
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where

an �
1

22n�n!�2 ; n5 0; b0 � ÿg;

y � ÿ0�5772156649 �Euler0s constant�; bn � an

Pn
m�1

1

m
ÿ g

� �
; n5 1;

c0 � 1�25331414; c1 � ÿ0�07832358; c2 � 0�02189568; c3 � ÿ0�01062446;

c4 � 0�00587872; c5 � ÿ0�00251540; c6 � 0�00053208; je1j < 1�9� 10ÿ7:

The necessity of representing K0�y� as (52) stems from the fact that series (51) is slowly convergent

for large y.

Substituting (51) into (50), we derive for yL 4 2

Pk�yL; b� � ÿ
P1
n�0

anA2n�k �
P1
n�0

bnB2n�k; �53�

where

Am �
�yL

0

ym exp�ÿby� ln
y

2

� �
dy; �54�

Bm �
�yL

0

ym exp�ÿby� dy �55�

are given by

A0 �
1

b
Ei�ÿbyL� ÿ exp�ÿbyL� ln

yL

2

� �
ÿ lnj2bj ÿ g

h i
; m � 0; �56�

Am �
1

b
mAmÿ1 � Bmÿ1 ÿ ym

L exp�ÿbyL� ln
yL

2

� �h i
; m > 0; �57�

B0 �
1

b
�1ÿ exp�ÿbyL��; m � 0; �58�

Bm �
1

b
�mBmÿ1 ÿ ym

L exp�ÿbyL��; m > 0: �59�

In (56),

Ei��x� � � exp��x�
�1

0

dt

x� ln t
; x > 0;

is the integral exponential function.25

Substituting (52) into (50), we obtain for yL > 2

Pk�yL; b� � Pk�2; b� �
Pkÿ1

n�0

cn2nD*kÿn �
P6
n�k

cn2nDnÿk; �60�
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where k � 0; 1; 2; 3; 4 and

Dm* �
�yL

2

ymÿ1=2 exp�ÿay� dy � 2�fm�
p

yL� ÿ fm�
p

2��; m � 0; 1; . . . ; 6; �61�

Dm �
�yL

2

yÿmÿ1=2 exp�ÿay� dy � qm�yL� ÿ qm�2�; m � 1; 2; 3; 4: �62�

In (61), fm�
p

z� is given by

fm�
p

z� � exp�ÿaz�
�2mÿ 1�!!2a

Pm
j�1

�ÿ2�j�2mÿ 2j ÿ 1�!!ajz jÿmÿ1=2 ÿ �ÿ2�mÿ1ppamÿ1=2

�2mÿ 1�!! erf �p�az��; �63�

where a � 1� b and

erf �z� � 2p
p

�z

0

exp�ÿt2� dt

is the error function.25 The function qm�z� in (62) may be written as

qm�z� � �2mÿ 1�!!pp2ÿmaÿmÿ1=2erf �p�az�� ÿ 1

a
zmÿ1=2 exp�ÿaz� Pmÿ1

j�0

�2mÿ 1�!!
�2mÿ 2j ÿ 1�!! �2az�ÿj: �64�

Note that (63) and (64) are inappropriate for b � ÿ1, so in this case (61) and (62) are given by

Dm* �
2

1� 2m
�ym�1=2

L ÿ 2m�1=2�; �65�

Dm �
2

1ÿ 2m
�yÿm�1=2

L ÿ 2ÿm�1=2�: �66�

As may be seen, values of Am and Bm cannot be evaluated directly from (56)±(59) for b � 0. We

obtain from (50) for b � 0 (see Reference 26 for details)

P0�yL; 0� � yLK0�yL� � 1
2
pyL�L0�yL�K1�yL� � L1�yL�K0�yL��; �67�

in which L0�:� and L1�:� are modi®ed Struve functions,24 and

P1�yL; 0� � 1ÿ yLK1�yL�; �68�
P2�yL; 0� � ÿy2

LK1�yL� � 1
2
pyL�L0�yL�K1�yL� � L1�yL�K0�yL��; �69�

P3�yL; 0� � ÿyL�y2
L � 4�K1�yL� ÿ 2y2

LK0�yL� � 4: �70�

The value of P4�yL; 0� may be obtained using standard Gaussian quadrature, as the integrand does not

involve any singularity for k � 4.

APPENDIX II: DERIVATION OF INTEGRALS Tk

To obtain the integral

Tk�yL; b� �
�yL

0

yk 1

y
ÿ exp�ÿby�K1�y�

� �
dy; k � 0; 1; 2; 3; 4; �71�
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the modi®ed Bessel function of the second kind of ®rst order is represented by

K1�y� �
1

y
� ln

y

2

� � P1
n�0

pny2n�1 ÿ P1
n�0

qny2n�1; 0 < y4 2; �72�

K1�y� �
exp�ÿy�p

y

P6
n�0

sn

2

y

� �n

� e2; y > 2; �73�

where

pn �
1

22n�1n!�n� 1�! ; n5 0;

qn � ÿg� Pn
k�1

1

k
� 1

2�n� 1�
� �

pn; n5 0;

s0 � 1�25331414; s1 � 0�23498619; s2 � ÿ0�03655620; s3 � 0�01504268;

s4 � ÿ0�00780353; s5 � 0�00325614; s6 � ÿ0�00068245; je2j < 2�2� 10ÿ7:

Integrating (71) for yL 4 2, we obtain

Tk�yL; b� � Tk*ÿ
P1
n�0

pnA2n�k�1 �
P1
n�0

qnB2n�k�1; �74�

where

Tk* �
�yL

0

ykÿ1�1ÿ exp�ÿby�� dy �75�

is given by

T0* � ln�jbjyL� � gÿ Ei�ÿbyL�;
T1* � yL �

1

b
exp�ÿbyL� ÿ

1

b
;

T2* �
y2

L

2
� yL

b
� 1

b2

� �
exp�ÿbyL� ÿ

1

b2
;

T3* �
y3

L

3
� y2

L

b
� 2yL

b2
� 2

b3

� �
exp�ÿbyL� ÿ

2

b3
;

T4* �
y4

L

4
� y3

L

b
� 3y2

L

b2
� 6yL

b3
� 6

b4

� �
exp�ÿbyL� ÿ

6

b4
:

Substituting (73) into (71), we derive for yL > 2

Tk�yL; b� � Tk�2; b� � ~Tk�yL; b� ÿ
Pkÿ1

n�0

sn2nD*kÿn ÿ
P6
n�k

sn2nDnÿk ; �76�

where k � 0; 1; 2; 3; 4 and

~Tk�yL; b� �
�yL

2

ykÿ1 dy �77�
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is given by

~T0�yL; b� � ln
yL

2

� �
; k � 0; �78�

~Tk�yL; b� �
1

k
�yk

L ÿ 2k�; k > 0: �79�

Now we consider limiting values of Tk�yL; b� for b � 0:

T0�yL; 0� � ÿP1
n�0

pnA*2n�1 �
P1
n�0

qnB*2n�1; k � 0; �80�

where

B*m �
1

m� 1
ym�1

L ; m5 0; A*m � ln
yL

2

� �
ÿ 1

m� 1

� �
B*m; m5 0:

The other values of Tk�yL; b� may be expressed as

T1�yL; 0� � yL ÿ 1
2
pyL�L0�yL�K1�yL� � L1�yL�K0�yL��; �81�

T2�yL; 0� � y2
L

2
� y2

LK0�yL� � 2yLK1�yL� ÿ 2; �82�

T3�yL; 0� � y3
L

3
� y3

LK0�yL� � 3y2
LK1�yL� ÿ 3

2
pyL�K0�yL�L1�yL� � K1�yL�L0�yL��; �83�

while T4�yL; 0� may be evaluated via Gaussian quadrature, since the integrand involves no

singularity.
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